Serotonin modulates a specific potassium current in the sensory neurons that show presynaptic facilitation in Aplysia.

نویسندگان

  • M Klein
  • J Camardo
  • E R Kandel
چکیده

Serotonin exerts a long-lasting excitatory action on sensory neurons of Aplysia californica by decreasing outward K+ current. The depression of outward current delays repolarization of the action potential and extends the duration of Ca2+ influx into the presynaptic terminals, thereby contributing to the facilitation of transmitter release that underlies behavioral sensitization. We have extended the analysis of serotonin's action and find that it acts on a specific serotonin-sensitive K+ current (S current), which is different from the early K+ current (IA), the delayed K+ current (IK), the Ca2+-dependent K+ current (IC), and the muscarine-sensitive M current. The serotonin-sensitive current in these cells persists when IA and IK are reduced by conditioning depolarization or channel-blocking agents. The S current is not activated by intracellular injection of Ca2+, nor is it affected by substitution of Ba2+ for Ca2+, a treatment that reduces IC. Moreover, intracellular injection of cyclic AMP exerts an effect indistinguishable from that of serotonin. This observation and the insensitivity of the current to Ba2+ distinguishes the S current from M current. S current is activated at the resting potential and does not inactivate with steady-state depolarization. It is active sufficiently early during an action potential to contribute to the repolarization of the action potential and therefore accounts for the physiological effects of serotonin.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Presynaptic modulation of voltage-dependent Ca2+ current: mechanism for behavioral sensitization in Aplysia californica.

Behavioral sensitization of the gill-withdrawal reflex of Aplysia is the result of a prolonged increase in transmitter release from the presynaptic terminals of sensory neurons. Earlier work suggested that this presynaptic facilitation might be mediated by a serotonin-sensitive adenylate cyclase in the sensory neuron terminals. Here we present evidence that presynaptic facilitation results from...

متن کامل

Postsynaptic Regulation of Long-Term Facilitation in Aplysia

Repeated exposure to serotonin (5-HT), an endogenous neurotransmitter that mediates behavioral sensitization in Aplysia[1-3], induces long-term facilitation (LTF) of the Aplysia sensorimotor synapse [4]. LTF, a prominent form of invertebrate synaptic plasticity, is believed to play a major role in long-term learning in Aplysia[5]. Until now, LTF has been thought to be due predominantly to cellu...

متن کامل

Inhibitor of adenosine 3':5'-monophosphate-dependent protein kinase blocks presynaptic facilitation in Aplysia.

Sensitization of the gill withdrawal reflex results from presynaptic facilitation at the excitatory synapses made by sensory neurons on gill motor neurons. Facilitation is accompanied by an increase in the duration of the action potential in sensory cells because of the depression of a K+ current. This results in an increasd influx of CA2+ and a greater release of transmitter from sensory neuro...

متن کامل

Activation of a heterologously expressed octopamine receptor coupled only to adenylyl cyclase produces all the features of presynaptic facilitation in aplysia sensory neurons.

Short-term behavioral sensitization of the gill-withdrawal reflex after tail stimuli in Aplysia leads to an enhancement of the connections between sensory and motor neurons of this reflex. Both behavioral sensitization and enhancement of the connection between sensory and motor neurons are importantly mediated by serotonin. Serotonin activates two types of receptors in the sensory neurons, one ...

متن کامل

Involvement of presynaptic and postsynaptic mechanisms in a cellular analog of classical conditioning at Aplysia sensory-motor neuron synapses in isolated cell culture.

Temporal pairing of presynaptic activity and serotonin produces enhanced facilitation at Aplysia sensory-motor neuron synapses (pairing-specific facilitation), which may contribute to classical conditioning of the gill and siphon withdrawal reflex. This cellular analog of conditioning is thought to involve Ca2+ priming of the cAMP pathway in the sensory neurons. Consistent with that idea, we ha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 79 18  شماره 

صفحات  -

تاریخ انتشار 1982